Metabolic and contractile influence of carbonic anhydrase III in skeletal muscle is age dependent.

نویسندگان

  • Claude H Côté
  • Fabrisia Ambrosio
  • Guylaine Perreault
چکیده

Carbonic anhydrase (CA) III is very abundant in type I skeletal muscle, but its function is still debated. Our aims were to examine CA III expression during growth and determine whether the effects of CA inhibition previously observed in adult muscles could be seen in younger rats in which CA III levels are lower. CA III content and activity were measured in soleus muscles from 10- to 100-day-old rats, and the influence of CA inhibitor on fatigue and hexosemonophosphate content was quantified in vitro. CA III activity and content increased fivefold between 10 and 100 days of age. Data analysis revealed that the influence of CA inhibitor on fatigue was to some extent positively and linearly related to the level of CA III activity. Hexosemonophosphate accumulation with CA inhibition also became more significant with age. In conclusion, CA III level in soleus muscle does not stabilize before 3 mo after birth; data also confirm that the effects of CA inhibitors are due to inhibition of the CA III isoform.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carbohydrate utilization in rat soleus muscle is influenced by carbonic anhydrase III activity.

Inhibition of carbonic anhydrase III (CA III; EC 4.2.1.1 ) activity in type I muscle can influence resistance to fatigue and glycogen utilization. Our aim was to determine if CA III inhibition could influence muscle pH and glycolytic rate. Muscle pH, hexosemonophosphates (HMP), glycolytic intermediates, ATP, and creatine phosphate (CP) were measured at rest and during a fatigue protocol in rat ...

متن کامل

Mitochondrial proteomic profiling reveals increased carbonic anhydrase II in aging and neurodegeneration

Carbonic anhydrase inhibitors are used to treat glaucoma and cancers. Carbonic anhydrases perform a crucial role in the conversion of carbon dioxide and water into bicarbonate and protons. However, there is little information about carbonic anhydrase isoforms during the process of ageing. Mitochondrial dysfunction is implicit in ageing brain and muscle. We have interrogated isolated mitochondri...

متن کامل

Carbonic anhydrase C in white-skeletal-muscle tissue.

We investigated the activity of carbonic anhydrase in blood-free perfused white skeletal muscles of the rabbit. Carbonic anhydrase activities were measured in supernatants and in Triton extracts of the particulate fractions of white-skeletal-muscle homogenate by using a rapid-reaction stopped-flow apparatus equipped with a pH electrode. An average carbonic anhydrase concentration of about 0.5 m...

متن کامل

Carbonic Anhydrase III Is Expressed in Mouse Skeletal Muscles Independent of Fiber Type-Specific Myofilament Protein Isoforms and Plays a Role in Fatigue Resistance

Carbonic anhydrase III (CAIII) is a metabolic enzyme and a regulator for intracellular pH. CAIII has been reported with high level expression in slow twitch skeletal muscles. Here we demonstrate that CAIII is expressed in multiple slow and fast twitch muscles of adult mouse independent of the expression of myosin isoforms. Expressing similar fast type of myofilament proteins, CAIII-positive tib...

متن کامل

Hydrolysis of 4-nitrophenyl acetate catalyzed by carbonic anhydrase III from bovine skeletal muscle.

We report three experiments which show that the hydrolysis of 4-nitrophenyl acetate catalyzed by carbonic anhydrase III from bovine skeletal muscle occurs at a site on the enzyme different than the active site for CO2 hydration. This is in contrast with isozymes I and II of carbonic anhydrase for which the sites of 4-nitrophenyl acetate hydrolysis and CO2 hydration are the same. The pH profile ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The American journal of physiology

دوره 276 2 Pt 2  شماره 

صفحات  -

تاریخ انتشار 1999